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1 Introduction

The hydrodynamics of relativistic conformal field theories has attracted much attention

recently, largely in view of the AdS/CFT correspondence between gravitational theories

on asymptotically Anti-de-Sitter (AdS) spaces and CFTs [1] (for a review see [2]). Hydro-

dynamics gives a universal description of the large-time dynamics of the theory: starting

from an arbitrary initial state of the CFT, within the correlation time τcor the system

approaches the state of local thermal equilibrium. At t ≫ τcor the evolution is mainly the

evolution of the parameters of the local equilibrium described by hydrodynamics. On the

basis of the AdS/CFT correspondence one then expects that the large-time dynamics of

gravity can be obtained as a dual description of the CFT hydrodynamics [3, 4].
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A complete (compressible) hydrodynamics is described by five fields: the three ve-

locity components, the temperature and the particle density [5–7]. In a CFT there is no

locally conserved charge corresponding to the particle density [6, 8]. As a result, confor-

mal hydrodynamics is described by only four fields: the three velocity components and

the temperature.

Hydrodynamics applies under the condition that the correlation length of the fluid lcor

is much smaller than the characteristic scale L of variations of the macroscopic fields. In

order to characterize this, one introduces the dimensionless Knudsen number

Kn ≡ lcor/L . (1.1)

Since the only dimensionfull parameter is the characteristic temperature of the fluid T , one

has by dimensional analysis,

lcor = (~c/kBT )G(λ) , (1.2)

where λ denotes all the dimensionless parameters of the CFT. The function G(λ) charac-

terizes the CFT.

The stress-energy tensor of the CFT obeys

∂νT µν = 0, T µ
µ = 0 . (1.3)

The equations of relativistic hydrodynamics are determined by the constitutive relation

expressing T µν in terms of the temperature T (x) and the four-velocity field uµ(x) satisfying

uµuµ = −1. Here uµ and T determine the local thermal equilibrium distribution of the

fluid. The constitutive relation has the form of a series in the small parameter Kn ≪ 1,

T µν(x) =
∞
∑

l=0

T µν
l (x), T µν

l ∼ (Kn)l, (1.4)

where T µν
l (x) is determined by the local values of uµ and T and their derivatives of a finite

order. The smallness of T µν
l arises because it involves either the l−th derivative of uµ or T

or because it contains the corresponding power of a lower-order derivative. Keeping only the

first term in the series gives ideal hydrodynamics, within which the entropy is conserved and

the entropy density per unit volume σ obeys a conservation law ∂µ(σuµ) = 0. Dissipative

hydrodynamics arises when one keeps the first two terms in the series.

The ideal hydrodynamics approximation for T µν does not contain the spatial deriva-

tives of the fields. The stress-energy tensor reads (up to a multiplicative constant)

Tµν = T 4 [ηµν + 4uµuν ] , (1.5)

where ηµν = diag[−,+,+,+].

The dissipative hydrodynamics is obtained by keeping the l = 1 term in the series in

eq. (1.4). In the Landau frame [6, 9] the stress-energy tensor reads (up to a multiplica-

tive constant)

Tµν = T 4 [ηµν + 4uµuν ] − cησµν , (1.6)
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where σµν obeys σµνuν = 0 and is given by

σµν = (∂µuν + ∂νuµ + uνuρ∂ρuµ + uµuρ∂ρuν) −
2

3
∂αuα [ηµν + uµuν ] . (1.7)

The dissipative hydrodynamics of a CFT is determined by only one kinetic coefficient -

the shear viscosity η. The bulk viscosity ζ vanishes for the CFT, while the absence of the

particle number conservation and the use of the Landau frame allow to avoid the use of

heat conductivity, which is not an independent coefficient here [8]. Dimensional analysis

dictates that η = F (λ)T 3, where F (λ) is a function characterizing the CFT and we again

omit a multiplicative constant in T µν .

The hydrodynamics of relativistic conformal field theories is intrinsically relativistic

as is the microscopic dynamics. However, it has been shown in [10], that the limit of

non-relativistic macroscopic motions of a CFT hydrodynamics leads to the non-relativistic

incompressible Euler and Navier-Stokes equations for ideal and dissipative hydrodynamics

of the CFT, respectively (see also [11]). For ideal hydrodynamics the implication follows

by noting that the equations (1.3) written in terms of v defined by uµ = (γ, γv/c) and a

variable P equal to c2 ln T up to an additive constant, take the form

1

c2

[

∂P

∂t
+

2c2

3c2 − v2
(v · ∇)P

]

= − c2

3c2 − v2
∇ · v, (1.8)

∂vi

∂t
+ (v · ∇)vi = −

(

1 − v2

c2

)[

δij −
2vivj

3c2 − v2

]

∇jP +

(

c2 − v2
)

vi (∇ · v)

3c2 − v2
.

(1.9)

Now if we consider the solutions for which v remains finite in the limit c → ∞, then the

limiting field v obeys

∂v

∂t
+ (v · ∇)v = −∇P +

∇ · v
3

v, −1

3
∇ · v =

1

c2

∂P

∂t
. (1.10)

The first equation above implies that ∇P must be finite at c → ∞. However it is still

possible that P contains a function of time leading to a finite spatially constant divergence

of velocity. The general form of non-relativistic dynamics is therefore

∂v

∂t
+ (v · ∇)v = −∇P − a(t)v, ∇ · v = −3a(t) . (1.11)

If we now impose the condition that v remains finite at large distances (which is valid in

most physical situations), then we must require that a(t) ≡ 0. We conclude that non-

relativistic, finite at infinity, motions of the CFT obey the incompressible Euler equations

∂v

∂t
+ (v · ∇)v = −∇P, ∇ · v = 0 . (1.12)

Analogous considerations hold for the viscous hydrodynamics where the limiting field v

obeys the incompressible Navier-Stokes equations

∂v

∂t
+ (v · ∇)v = −∇P + ν∇2v, ∇ · v = 0 . (1.13)
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The kinematic viscosity ν is given by

ν = ~c2F (λ)/4kBT0 . (1.14)

T0 is the main component of the temperature, which is approximately constant in the

considered limit,

T = T0

[

1 +
P

c2
+ O

(

1

c

)]

, (1.15)

see [10]. Thus, a relativistic conformal field theory contains the incompressible Euler and

Navier-Stokes equations inside it.

The solutions to the non-relativistic incompressible Navier-Stokes equations have spe-

cial importance in light of the AdS/CFT correspondence: they allow to construct an explicit

approximate solutions to the five-dimensional Einstein equations with negative cosmologi-

cal constant

Rmn + 4gmn = 0, R = −20 , (1.16)

where we use RAdS = 1. If v and P solve eqs. (1.13) and obey the condition Kn ≪ 1, then

the metric g0 defined by (~ = kB = 1)

(g0)mndymdyn = −2uµ

(

xα
)

dxµdr + π4T 4
(

xα
)

r−2uµ

(

xα
)

uν

(

xα
)

dxµdxν + r2ηµνdxµdxν ,

(1.17)

y = (xµ, r), uµ =
( 1
√

1 − v2/c2
,

v/c
√

1 − v2/c2

)

, T =
c2

4πν
+

P

4πν
, (1.18)

has a value of Rmn +4gmn, which is small both in Kn and v/c (see the details in section 5).

Consider a typical solution of eq. (1.13), which is turbulent (the majority of flows in

nature are turbulent). There are two important scales in the solution: the outer scale of

turbulence LO, dictated by the boundary or initial conditions, and the Kolmogorov scale

lK ∼
(

ν3/ǫ
)1/4 ≪ LO , (1.19)

where ǫ is the energy dissipation per unit volume [5]. At the scale lK the flow becomes

smooth (here we make a rough estimate neglecting intermittency), so the Knudsen number

obeys Kn ∼ lcor/lK . Using ǫ ∼ v3
c/LO where vc is characteristic value of the fluctuating

component of the flow velocity, one may reexpress Kn in terms of LO and vc as

Kn ∼ (lcor/LO)1/4 (vc/c)
3/4 . (1.20)

Here we used the fact that generally F (λ) ∼ G(λ), see [10, 12]. One sees that one can realize

Kn ≪ 1 by dialing the outer scale of turbulence LO, and the characteristic fluctuating

component of the velocity vc. The possibility of having a globally defined hydrodynamic

flow with a uniformly small Knudsen number is specific for non-relativistic flows, and it

normally does not exist for relativistic (compressible) flows, see details in sections 4 and 5.
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In this paper we consider the hydrodynamics of relativistic conformal field theories

at finite temperature and its slow motions limit, where it reduces to the incompressible

Navier-Stokes equations. The symmetries of the equations and their solutions are analyzed.

We construct exact solutions with finite time singularities of one-dimensional relativistic

conformal hydrodynamic motions, and use them to generate multi-dimensional solutions

via special conformal transformations. These solutions, however, are shown to have no

non-trivial slow motions limit. A simple non-equilibrium steady state in the form of a

shock solution is constructed, and its inner structure is analyzed. We demonstrate that the

derivation of the gravitational dual description of conformal hydrodynamics is analogous

to the derivation of hydrodynamics equations from the Boltzmann equation. The shock

solution is shown to correspond to a domain-wall solution in gravity. We show that the

solutions to the non-relativistic incompressible Navier-Stokes equations play a special role

in the construction of global solutions to gravity.

The paper is organized as follows. In the section 2 we consider the symmetries of rela-

tivistic conformal hydrodynamics and their relation to the symmetries of the incompressible

Euler and Navier-Stokes equations in the limit of slow motions. In section 3 we construct

exact solutions of ideal CFT hydrodynamics. We analyse one-dimensional macroscopic

motions, introduce Riemann variables and provide a simple wave solution that becomes

singular in a finite time. We use the solution in order to generate multi-dimensional solu-

tions via special conformal transformations. We show, however, that these solutions have

no non-trivial slow motions limit. In section 4 we discuss weak solutions of ideal hydro-

dynamics defined at all times. We construct a stationary shock solution as an example

of a global weak solution. We describe its inner structure due to viscosity, its conformal

transformation and its non-relativistic limit. In section 5 we argue that the derivation of

the gravitational dual description of conformal hydrodynamics is analogous to the deriva-

tion of hydrodynamics equations from the Boltzmann equation. We show that the shock

solution corresponds to a domain-wall solution in gravity.

2 Symmetries of CFT hydrodynamics

Here we consider some special properties of the CFT hydrodynamics related to the un-

derlying symmetries of the CFT, extending some aspects of the analysis of [11]. The

conformal group is the symmetry group of the CFT equations (1.3), and it maps solutions

into solutions. The group includes the Poincare group, a dilatation and four special con-

formal transformations. The Poincare group reduces in the limit of slow motions to the

Galilean group, including Galilean transformations and space and time translations, which

is a symmetry group of the Navier-Stokes equations.

Consider next the dilatation that acts as:

xµ → λxµ, uµ(xα) → uµ(λxα), T (xα) → λ−1T (λxα) . (2.1)

The dilatation is a symmetry of the CFT equations (1.3), and it remains a symmetry for

ideal hydrodynamics in the limit of non-relativistic macroscopic motions, i.e. a symmetry

– 5 –



J
H
E
P
0
3
(
2
0
0
9
)
1
2
0

of the Euler equations. It acts as

t → λt, xi → λxi, vi → vi . (2.2)

For viscous hydrodynamics in the limit of non-relativistic macroscopic motions, one has

the dimensionfull kinematic viscosity that breaks this symmetry, and indeed, (2.2) is not

a symmetry of the Navier-Stokes equations.

The Euler equations have a bigger symmetry [5], which is generated by (2.2) to-

gether with

t → µt, xi → xi, vi → µ−1vi . (2.3)

However, the symmetry (2.3) does not follow from the symmetry group of relativistic

conformal hydrodynamics in the limit of slow motions, cf. below. A combination of the

two symmetries (2.2) and (2.3) with the same transformation parameter λ = µ = α yields

t → α2t, xi → αxi, vi → α−1vi , (2.4)

which is a symmetry of the non-relativistic viscous equations. In view of the above dis-

cussion, we conclude that also this symmetry does not follow from the symmetry group of

relativistic conformal hydrodynamics in the limit of slow motions.

2.1 Special conformal symmetries of relativistic motions

The special conformal transformations of the space-time coordinates xµ are given by

Φµ(x, b) =
xµ + bµx2

1 + 2b · x + b2x2
, (2.5)

where bµ is a constant four-vector. They satisfy the identity

ηµν (∂µΦα)
(

∂νΦ
β
)

=
ηαβ

(1 + 2b · x + b2x2)2
. (2.6)

A main distinguishing property of the CFT hydrodynamics is that the special con-

formal transformations allow to generate new solutions out of a given one. Consider a

stress-energy tensor T µν(x) of the conformal field theory, i.e. that satisfies equations (1.3).

Then, special conformal transformations produce a four-parametric family

Tµν(x, b) =
(∂µΦα)

(

∂νΦβ
)

(1 + 2b · x + b2x2)2
Tαβ [Φρ(x, b)] . (2.7)

where each Tµν(x, b) satisfies equations (1.3).

The vanishing of the trace T µ
µ (x, b) follows immediately from eq. (2.6). It is also

straightforward to check that the equation ∂νT µν(x, b) = 0 is satisfied, where the derivative

is taken with respect to x. Thus, conformal transformations generate from any solution

of (1.3) a four-parameter family of solutions. Consider now the relativistic conformal

hydrodynamics, where the stress-energy tensor is defined by the four fields: uµ and T . The

analysis above implies that special conformal transformations of any solution uµ, T of the

– 6 –
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conformal hydrodynamic equations generate a four-parameter family of solutions T (x, b),

uµ(x, b), where

uµ(x, b) =
(

1 + 2b · x + b2x2
)

(∂µΦα) uα [Φ(x, b)] , (2.8)

T (x, b) =
T [Φ(x, b)]

1 + 2b · x + b2x2
. (2.9)

One can verify that uµ(x, b) has the correct normalization uµ(x, b)uν(x, b)ηµν = −1 and

the above transformations of u and T lead to transformation (2.7) both for the ideal

hydrodynamics T µ given by eq. (1.5) and for viscous hydrodynamics T µν given by eq. (1.6).

Note that the velocity transformation (2.8) can be rewritten as

uµ(x, b) = uµ [Φ(x, b)] + 2uα [Φ(x, b)] × bαxµ − bµxα + 2bαxµb · x − b2xαxµ − x2bαbµ

1 + 2b · x + b2x2
.

(2.10)

2.2 Special conformal symmetries of non-relativistic motions

In order to analyze the non-relativistic limit of special conformal transformations of the hy-
drodynamics it is convenient to consider the special conformal transformation of v defined
by uα = (−γ, γv/c). Using vi = −cui/u0, one finds that eq. (2.8) implies the transforma-
tion of v

vi(x, b)=

(1 + 2b·x + b2x2)vi

[

Φ(x, b)
]

+ 2vj

[

Φ(x, b)
][

bjxi − bix
j + 2bjxib·x − b2xjxi − x2bjbi

]

1+2b·x+b2x2+2
[

2b0x0b·x+b2x2
0+x2b2

0

]

−2vj

[

Φ(x, b)
][

bjx0−b0xj +2bjx0b·x−b2xjx0−x2bjb0

]

/c

− 2c
[

b0xi − bix
0 + 2b0xib·x − b2x0xi − x2b0bi

]

1+2b·x+b2x2+2
[

2b0x0b·x+b2x2
0+x2b2

0

]

−2vj

[

Φ(x, b)
][

bjx0−b0xj +2bjx0b·x−b2xjx0−x2bjb0

]

/c
.

(2.11)

Consider solutions of relativistic conformal hydrodynamics, where v remains finite in the

limit c → ∞, and thus obeys the non-relativistic incompressible Euler (Navier-Stokes)

equations. Then, if we employ in the above transformation such parameters b that v(x, b)

is also finite at c → ∞, we find a symmetry of the Euler equation. First it is necessary that

the argument Φ(x, b) is finite in the limit c → ∞. This implies bi = ai/c2 and b0 = a/c

where ai and a have either finite or zero limit at c → ∞. Thus,

t → t

1 − at
, xi → xi − ait2

(1 − at)2
. (2.12)

The expression (2.11) gives the transformation of v in the non-relativistic limit

v(x, t, a,a) = v

[

t

1 − at
,

x − at2

(1 − at)2

]

+ 2
at − ax

1 − at
. (2.13)

If we take a = 0 (or equivalently assume that a scales as some negative power of c), while

ai is finite at c → ∞, then we get the following symmetry of the Euler equation

v(x, t,a) = v
[

x − at2, t
]

+ 2at . (2.14)

– 7 –
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This symmetry, discussed also in [11], corresponds to adding a uniform gravitational field

to the Euler equation. Indeed, if v(x, t) satisfies the incompressible Euler equation then

v(x, t,a) satisfies ∂tv + (v · ∇)v = −∇p + 2a. However 2a = ∇(2a · r) can be reabsorbed

in the pressure, so that v(x, t,a) is also a solution of the incompressible Euler equation.

Thus,this symmetry corresponds to a combination of a passage to a uniformly accelerating

frame and the possibility of reabsorbing a (uniform) gravitational field into the pressure

(known in fluid mechanics see e.g. pp. 16−17 in [13]). The above consideration also works

for the Navier-Stokes equation.

If we choose ai = 0 (equivalent to assuming that ai decreases as a negative power of

c), while a remaining finite at c → ∞ we get

v(x, t, a) = v

[

t

1 − at
,

x

(1 − at)2

]

− 2ax

1 − at
. (2.15)

This transformation describes an addition of a total expansion (from the center at x = 0) or

a total contraction (to the center at x = 0) to the given flow. However, this transformation

does not preserve the condition of finite velocity at large distances and as a result is not

a symmetry of the incompressible Euler equation. In particular, out of an incompressible

velocity it produces a field with ∇ · v(x, t, a) = 6a/(1 − at).

Although the transformation (2.15) breaks the finiteness of velocity at infinity, and

does not describe a symmetry of the incompressible Euler equation, it is a symmetry of

the more general equation (1.11). Note, also that this transformation is different from the

special conformal transformation that completes the Schrödinger symmetry group. The

latter acts as

t → t

1 − at
, xi → xi

1 − at
. (2.16)

3 Exact solutions of ideal CFT hydrodynamics

3.1 One-dimensional motions and finite time singularities in ideal CFT hy-

drodynamics

Equations (1.3) can be written as [9]

Dξ = −1

3
∂νuν , Duµ = −∂µξ +

uµ∂νu
ν

3
, (3.1)

where ξ ≡ ln T and D = uα∂α. The first equation follows from the second by multiplication

with uµ and the use of uµuµ = −1.

Let us consider one-dimensional hydrodynamic motions, that is motions that depend

only on one spatial coordinate, say x, and have uy = uz = 0. It should be stressed that the

microscopic dynamics of the system is still (3 + 1)−dimensional, and it is only the macro-

scopic motion that is one-dimensional. For example, one could think of pushing the CFT

fluid through a pipe where x is the coordinate along the pipe. It is convenient to parame-

terize the velocity by u0 = cosh φ and ux = sinh φ. Substituting uµ = (cosh φ, sinh φ, 0, 0),

– 8 –
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we find that the µ = 0 and µ = 1 components of the second of eqs. (3.1) give

∂ξ

∂t
=

sinh 2φ

3

∂φ

∂t
+ c

cosh 2φ − 2

3

∂φ

∂x
, (3.2)

−∂ξ

∂x
=

cosh 2φ + 2

3c

∂φ

∂t
+

sinh 2φ

3

∂φ

∂x
, (3.3)

respectively. This system has a more symmetric form when written as an evolution equation

for ξ and φ,

∂ξ

∂t
= − c sinh(2φ)

[cosh(2φ) + 2]

∂ξ

∂x
− c

[cosh(2φ) + 2]

∂φ

∂x
, (3.4)

∂φ

∂t
= − c sinh(2φ)

[cosh(2φ) + 2]

∂φ

∂x
− 3c

[cosh(2φ) + 2]

∂ξ

∂x
. (3.5)

It is interesting to notice the particular form that the above equations take, when considered

up to quadratic order in φ. Introducing v′/c = 2φ/3 and ρ = T 2 we find

∂ρ

∂t
+

∂(ρv′)

∂x
= 0, (3.6)

ρ

(

∂v′

∂t
+ v′

∂v′

∂x

)

= −∂p

∂x
, p ≡ ρc2

3
. (3.7)

These equations describe an isothermal one-dimensional flow of gas with temperature c2/3.

They also describe one-dimensional isentropic, i.e constant entropy density, motion of a

barotropic gas with velocity v′ and pressure p = ρc2/3. In general, a barotropic gas with

isentropic motion obeys p = Aργ where A is a constant and γ ≥ 1 is the polytropic

exponent of the gas, which is equal to the ratio of the heat capacities at constant pressure

and volume, respectively. Here γ = 1, which corresponds to gas in the limit of a large

number of internal degrees of freedom of the molecules. It is notable that a motion of such

a gas admits a gravity dual interpretation, as we will discuss in the last section.

The system of equations (3.2)–(3.3) is a 2 × 2 system of quasi-linear PDE. It can

be recast using Riemann variables, which are conserved along characteristic directions in

space [14]. Here the result of the procedure can be readily seen directly from the equations.

Multiplying the second of eqs. (3.4)–(3.5) with 1/
√

3 and adding and subtracting it from

the first equation we get

∂ξ

∂t
+

c
[

sinh 2φ ±
√

3
]

cosh 2φ + 2

∂ξ

∂x
± 1√

3

[

∂φ

∂t
+

c
[

sinh 2φ ±
√

3
]

cosh 2φ + 2

∂φ

∂x

]

= 0. (3.8)

These equations relate derivatives of φ and ξ along the two families x±(t) of characteristic

directions, defined by

dx±

dt
=

c
[

sinh 2φ ±
√

3
]

cosh 2φ + 2
. (3.9)

Thus, two families of characteristics emanate from each point of the fluid. They describe

non-linear propagation of sound to the right (x+)and to the left (x−). In the limit of linear
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sound (small φ), the equations are simply ẋ± = ±c/
√

3 where c/
√

3 is the speed of sound.

Correspondingly, the Riemann variables have a remarkably simple form

r± = ξ ± φ√
3
, (3.10)

and the equations governing one-dimensional hydrodynamic motions of the CFT fluid can

be written in the form
[

∂

∂t
+ c

sinh
[√

3(r+ − r−)
]

+
√

3

cosh
[√

3(r+ − r−)
]

+ 2

∂

∂x

]

r+ = 0, (3.11)

[

∂

∂t
+ c

sinh
[√

3(r+ − r−)
]

−
√

3

cosh
[√

3(r+ − r−)
]

+ 2

∂

∂x

]

r− = 0 . (3.12)

The above system admits special solutions, called simple waves, where one of Riemann

variables is a constant. For example, for r− = const, we find a closed equation on r+ of

the form

∂tr+ + f(r+)∂xr+ = 0 . (3.13)

Introducing w = f(r+) we find that w obeys the Hopf equation

∂w

∂t
+ w

∂w

∂x
= 0 . (3.14)

The equation describes formation of discontinuities (shocks) in w in a finite time. The

shocks form when the spatial derivative of the initial condition on w is negative somewhere.

Indeed, introducing σ = ∂xw we find that σ obeys

d

dt
σ[x(t), t] = −σ2[x(t), t],

dx

dt
= w[x(t), t]. (3.15)

This equation predicts finite time blowup of σ, that occurs at x(t) emanating from the initial

point where σ has the (negative) minimum. It is easy to see that the blowup corresponds

to the formation of a discontinuity in w. One can use the implicit form of the solution of

eq. (3.14),

w(x, t) = w0 [x − w(x, t)t] , w0 ≡ w(x, t = 0). (3.16)

Qualitatively, eq. (3.14) describes velocity field of free particles moving on a line where

the discontinuity forms when faster particles catch up with the slower particles in front

of them.

The formal reason for the formation of discontinuities in a simple wave is the intersec-

tion of characteristics. The field w in eq. (3.14) is conserved along the characteristic lines

x(t) defined in eq. (3.15). In general, nothing prevents the lines from intersecting in a finite

time T . At t > T the solution obtained by imposing the field conservation along the char-

acteristics would become multi-valued, which is signaled by the divergence of the spatial

derivative of w at the intersection point. The same property of the finite-time formation of

infinite derivatives of the fields holds for the solutions of the system (3.11)–(3.12) and thus,
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also of the original system (3.2)–(3.3). Indeed, the equations imply that r± are conserved

along the corresponding characteristics in (x, t) plane. Generically, these characteristics

intersect in a finite time, and at the intersection time a field derivative diverges. Thus,

we conclude that ideal hydrodynamics equations in one dimension lead to a finite time

singularity of the derivatives.

3.2 Special conformal symmetry generation of higher-dimensional solutions

As shown in the previous section, one may solve rather generally the one-dimensional dy-

namics of the fluid in a CFT hydrodynamics. We can generate from the one-dimensional

solutions, higher dimensional ones by applying special conformal transformation as in

eqs. (2.8)–(2.9). With the help of eq. (2.10), one finds that a solution of one-dimensional

hydrodynamics leads to a family of solutions:

u0(x, b) = cosh φ [Φ(x, b)]

[

1 + 2
(bx0 − xb0)2

1 + 2b · x + b2x2

]

+
2 sinh φ [Φ(x, b)]

1 + 2b · x + b2x2

×
[

b1x
0 − b0x1 + 2b1x

0b · x − b2x1x
0 − x2b1b

0

]

,

u1(x, b) = sinhφ [Φ(x, b)]

[

1 + 2
2b1x1b · x − b2(x1)2 − x2(b1)2

1 + 2b · x + b2x2

]

+ 2cosh φ [Φ(x, b)]

×b0x
1 − b1x0 + 2b0x

1b · x − b2x0x
1 − x2b0b

1

1 + 2b · x + b2x2
, (3.17)

u2(x, b) =
2

1 + 2b · x + b2x2

[

cosh φ [Φ(x, b)]

(

b0x2 − b2x0 + 2b0x2b · x − b2x0x2 − x2b0b2

)

+ sinhφ [Φ(x, b)] ×
(

b1x2 − b2x1 + 2b1x2b · x − b2x1x2 − x2b1b2

)

]

ξ(x, b) = ξ [Φ(x, b)] + ln
[

1 + 2b · x + b2x2
]

, (3.18)

where bµ = (b0, b) and xµ = (x0,x), the expression for u3 is obtained from the ex-

pression for u2 by interchange of indices, and φ and ξ are obtained from the one-

dimensional hydrodynamics.

3.3 The non-relativistic limit

The relativistic one-dimensional solution does not have a non-trivial slow motions limit

since the incompressibility condition implies that the velocity is independent of the coordi-

nate x. This is in accord with the presence of a factor of c in front of the space derivative in

eqs. (3.11)–(3.12). We have seen that we can generate from the relativistic one-dimensional

solution, higher dimensional ones by applying special conformal transformations. It is still

natural to ask whether these higher-dimensional solutions have a non-trivial slow motions

limit, i.e. whether they also solutions of the incompressible Navier-Stokes equations. We

will show in the following that this is not the case, and also the higher-dimensional solu-

tions do not have a non-trivial slow motions limit. Of course, this is not really a surprise,
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since as we noted above, the one-dimensional solution with which we started in order to

generate the higher-dimensional ones, has a trivial limit.

For simplicity we set the time coordinate to zero. One can write the general structure

of the velocity vi using equations (3.18) as

vi(r) =
(

1 + 2b · x + b2x2
)

φ(Φ)∇iΦ , (3.19)

where

Φ =
x + bxx2

1 + 2b · x + b2x2
. (3.20)

The incompressibility condition implies then that

φ′

φ
(Φ) = −∇i

[

(1 + 2b · x + b2x2)∇iΦ
]

(1 + 2b · x + b2x2)(∇Φ)2
. (3.21)

Since the l.h.s. of (3.21) is a function of Φ, we need to require that the r.h.s. is also a function

of Φ in order to be able to solve of φ. However, a straightforward calculation shows that

the r.h.s. of (3.21) is not a function of Φ, for Φ finite in the slow motions limit. Thus, the

incompressibility equation cannot be solved, and there is no non-trivial slow motion limit

to the higher-dimensional solution of the relativistic conformal hydrodynamics.

4 Shock solutions

4.1 Shocks-global solutions in ideal hydrodynamics

We have seen that the relativistic ideal conformal hydrodynamics evolution in one dimen-

sion produces discontinuities in a finite time. The mechanism for the generation of the

singularity is the intersection of characteristics, and it holds in higher-dimensional motions

as well. A simple concrete example is the multi-dimensional generalization of the Hopf

equation (3.14) provided by ∂tw + w∇w = 0. The matrix σij = ∂jwi obeys the equation

dσ/dt = −σ2 , that predicts a finite time blow up of σ. The finite-time generation of

discontinuities is a general property of ideal hydrodynamics.

A natural question that arises is how should we define the hydrodynamics evolution

beyond the singularity time? One way is to include the viscous contribution to the stress

tensor, and consider eqs. (1.3) and (1.6) instead of eqs. (1.3) and (1.5). According to the

ideal hydrodynamics equations, the viscous contribution grows in time and becomes infinite

at the time of formation of the discontinuity [cf. eq. (1.7)]. Thus, the viscous contribution

is important near the singularity. It is conjectured (cf. [5, 6]), that this contribution

regularizes the singularity, makes all the fields finite and provides a well-defined evolution

within the frame of differential equations.

A different approach for dealing with the singularity is to continue the solutions of the

ideal hydrodynamics beyond the singularity time, by passing from classical (differentiable)

to weak solutions of the equations, where weak solutions are solutions with discontinuities.

This formulation is very useful when considering high Reynolds number flows, for which

the viscosity is effectively small [6]. In such flows the viscosity is important only near the
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points, where a discontinuity would form in the absence of viscosity. The effect of viscosity

is to smooth the discontinuity, while in the other regimes of the flow the viscosity effect

is small.

An appropriate framework is to apply an ideal hydrodynamics evolution everywhere,

except at the hypersurfaces where a discontinuity forms. At the discontinuity one requires

that the normal components of fluxes of locally conserved energy and momentum densities

remain continuous. This requirement is necessary in order for the equations to describe the

local conservation laws, as the hydrodynamics should do. The corresponding constraints

at the discontinuity are called the Rankine-Hugoniot conditions.

The main advantage of the obtained weak solutions - the shocks - is that they provide

within the framework of ideal hydrodynamics, global and valid solutions at all times. Let

us construct a simple example of such a solution. The simplest solution of the system of

eqs. (1.3) and (1.5) is a boosted equilibrium state, where T and uµ are constants. We can

saw two equilibrium solutions along a plane, and form a simple but non-trivial solution -

a shock wave. T and uµ are piecewise constant and they have a single discontinuity along

a plane x = x(t). In the frame that moves with the shock where x(t) ≡ 0 (the considered

shock solutions move at the constant speed), the fluxes of the conserved quantities must

be continuous through the shock. This leads to the Rankine-Hugoniot conditions

[

T 4 (ηµx + 4uµux)
]

= 0 , (4.1)

where the brackets stand for the value of the jump in the function through the shock. In

contrast, the entropy flux does not have to be continuous - rather the entropy grows in

the shock.

Using uµ = (γ, γv) (here we set c = 1), we get from eq. (4.1)

[

T 4vx

1 − v2

]

= 0,

[

T 4 +
4T 4v2

x

1 − v2

]

= 0 , (4.2)

and
[

T 4vyvx

1 − v2

]

= 0,

[

T 4vzvx

1 − v2

]

= 0. (4.3)

If vx is non-zero the equations imply that the velocity components parallel to the shock

plane are continuous across the shock. For convenience, we can set these components to

zero, and we are left with
[

T 4vx

1 − v2
x

]

= 0,

[

T 4 +
4T 4v2

x

1 − v2
x

]

= 0 . (4.4)

Note, that if we use the general conditions for the shock [6] with p = aT 4 and heat function

w = 4aT 4 (where a = const), then we get the same conditions.

If we denote by T1, T2 and v1, v2 the values of the temperature and the velocity com-

ponent vx at two sides of the shock, then the conditions read

T 4
2 v2

1 − v2
2

=
T 4

1 v1

1 − v2
1

, T 4
2 +

4T 4
2 v2

2

1 − v2
2

= T 4
1 +

4T 4
1 v2

1

1 − v2
1

. (4.5)
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These equations define a two-parameter family of shock solutions of hydrodynamics. The

two parameters correspond to the values of the fluxes of the energy and the x−component

of the momentum through the shock. Evidently, T1 = T2 and v1 = v2 solve the above

equations. In order to analyze the conditions for a non-trivial solution, we assume that the

fields T2, v2 at x < 0 are given (one can assume v2 > 0 as the solution with v2 < 0 can be

obtained by the sign reversal). Equating the expressions for T 4
2 /T 4

1 , we find a quadratic

equation for v1 that has two solutions, v1 = 1
3v2

and the trivial solution v1 = v2. Thus, a

non-trivial solution with v1 = 1
3v2

≤ 1 exists only for v2 above the threshold value of 1/3

(recall that the speed of sound is 1/
√

3). In the frame for which the fluid is at rest at −∞,

the shock always moves at a speed larger than 1/3. Note that the difference v1 − v2 can

be arbitrarily small.

Fixing the temperature from eq. (4.5), we find that non-trivial shock solutions at

v2 > 1/3 are described by the relations

v1 =
1

3v2
, T 4

1 = T 4
2

9v2
2 − 1

3
(

1 − v2
2

) . (4.6)

It is remarkable that the Rankine-Hugoniot conditions for the CFT have such explicit

solutions, cf. the usual situation [6]. Note that v1 > v2 for 1/3 < v2 < 1/
√

3 while v1 < v2

for v2 > 1/
√

3 where 1/
√

3 is the speed of sound. For v2 close to the speed of sound

we have v1 ≈ v2 while at the exact equality v2 = 1/
√

3 the solution trivializes. Finally

v1, like v2, belongs to the range 1/3 < v1 < 1 as should be due to the symmetry in the

indices interchange.

The above shock solutions are stationary non-equilibrium states of the fluid with finite

dissipation in the shock. The stationarity is sustained by the fact that the solution is

non-vanishing at infinity, and the presence of finite fluxes in the system.

4.2 Special conformal transformation of shocks

Shocks are quite simple solutions of ideal hydrodynamics: they are time-independent, one-
dimensional and piecewise constant. As a result they allow a clear insight into what kind of
a change the special conformal transformations produce in the solution. Using eqs. (2.11)
and (2.9) we find that shocks produce the following weak solution of the hydrodynamics

vi(x, b)=

(1 + 2b · x + b2x2)v[k]δi1 + 2v[k]

[

b1xi − bix
1 + 2b1xib · x − b2x1xi − x2b1bi

]

1+2b · x+b2x2+2
[

2b0x0b · x+b2x2
0+x2b2

0

]

−2v[k]

[

b1x0−b0x1+2b1x0b · x−b2x1x0−x2b1b0

]

/c

− 2c
[

b0xi − bix
0 + 2b0xib · x − b2x0xi − x2b0bi

]

1+2b · x+b2x2+2
[

2b0x0b · x+b2x2
0+x2b2

0

]

−2v[k]

[

b1x0−b0x1+2b1x0b · x−b2x1x0−x2b1b0

]

/c
,

(4.7)

T (x, b) =
T[k]

1 + 2b · x + b2x2
. (4.8)

where [k] = 1, 2 and v[k], T[k] are some constants obeying eqs. (4.5). The equation of

discontinuity hyperplane (where one should switch k = 1 to k = 2 in the above formula) is

given by x1 + b1x · x = 0. One observes that the special conformal transformations allow

to generate quite complicated motions out of even relatively simple motions.
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4.3 Shocks in viscous CFT hydrodynamics

The ideal hydrodynamics shock solution constructed above is clearly not uniformly valid in

space. It contains a discontinuity region, where derivatives are formally infinite indicating

that one must account for the viscous, and maybe also higher order derivatives contribu-

tions to T µν . The ideal hydrodynamics shock describes correctly the exact solution far

from the region of fast variations of the fields, and it arises when the formal limit of zero

viscosity is taken in the exact solution. Here we provide the exact solution of the viscous

hydrodynamics, and demonstrate how the one-dimensional shock considered in the first

subsection arises in the limit.

The stationary one-dimensional solutions of the hydrodynamics equations satisfy

∂νT
µν = ∂0T

µ0 + ∂xT µx = 0, ∂0T
µ0 = 0 . (4.9)

These equations imply that

T 0x = C1, T xx = C2 , (4.10)

where C1 and C2 are the constant fluxes of energy and momentum, respectively.

As already mentioned above, the states in question are non-equilibrium steady states

sustained by the presence of finite fluxes in the system. In an ideal hydrodynamics, the non-

trivial solutions of the above equations with different values of velocity and temperature at

x = −∞ and x = +∞, are obtained by introducing a discontinuity at x = 0. In contrast,

in the viscous hydrodynamics the different asymptotic values at x = −∞ and x = +∞
are connected smoothly and the discontinuity at x = 0 changes to a smooth transition

from the values of the fields at x = −∞ to those at x = +∞. Note, that at large |x| the

derivatives are small and ideal hydrodynamics is a good approximation. The regions that

are influenced by the viscosity are at the core of the shock.

In order to take into account viscosity, we consider σµν in eqs. (1.6)–(1.7). One notes

that the time-derivatives appearing in σµν can be substituted by their ideal hydrodynamics

expressions. Indeed, within hydrodynamics the time derivatives of fields are given by

a series in the spatial gradients of the fields. The second derivative terms in σµν are

higher order terms in the expansion compared to the considered order involving the first

derivatives [15]. The use of eqs. (3.1) allows to rewrite eq. (1.7) as [10]

σµν = ∂µuν + ∂νuµ − uν∂µξ − uµ∂νξ − 2ηµν∂αuα/3,

which gives

σ0x = cosh φ∂tφ − sinh φ∂xφ + cosh φ∂xξ − sinhφ∂tξ, (4.11)

σxx = 4cosh φ∂xφ/3 − 2 sinhφ∂xξ − 2 sinh φ∂tφ/3. (4.12)

The above expressions contain time-derivatives that make the equation ∂νT
µν = 0 a

second order equation in the time derivative. In order to obtain a well-defined evolution
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equation, which is first-order in time, one has to use the ideal hydrodynamics equation and

express the time derivatives via space derivatives. Using eqs. (3.4)–(3.5) one finds

σ0x = − 2w sinh 2φ

2 + cosh 2φ
, σxx =

2w[1 + cosh 2φ]

2 + cosh 2φ
, (4.13)

w = cosh φ
∂φ

∂x
− sinhφ

∂ξ

∂x
= T

∂

∂x

(

sinhφ

T

)

. (4.14)

Note, that both components involve the same combination of derivatives w. This combina-

tion contains besides the derivative of the velocity also the derivative of the temperature.

In non-relativistic hydrodynamics such terms arise from the heat conduction. Here their

appearance is in accord with the fact that the fluid viscosity allows to capture in a unified

way both the effects of viscosity and the heat conduction. With viscosity the components

of the stress-energy tensor read

T 0x = 2T 4 sinh 2φ − 2F (λ)T 4 sinh 2φ

2 + cosh 2φ

∂

∂x

(

sinhφ

T

)

, (4.15)

T xx = T 4 [2 cosh 2φ − 1] − 2F (λ)T 4[1 + cosh 2φ]

2 + cosh 2φ

∂

∂x

(

sinhφ

T

)

. (4.16)

Thus, stationary one-dimensional solutions of the CFT hydrodynamics obey (cf.

eqs. (4.10) and note that partial derivatives becomes ordinary ones):

2T 4 sinh 2φ − 2F (λ)T 4 sinh 2φ

2 + cosh 2φ

d

dx

(

sinhφ

T

)

= C1, (4.17)

T 4 [2 cosh 2φ − 1] − 2F (λ)T 4[1 + cosh 2φ]

2 + cosh 2φ

d

dx

(

sinhφ

T

)

= C2 . (4.18)

These equations pass to the ideal hydrodynamics equations in the zero viscosity limit

F (λ) → 0. Since far from x = 0 the viscous contribution in these equations can be

neglected due to the smallness of the derivatives, we find that the asymptotic values of the

functions at +∞ and −∞ satisfy

T 4
+∞ sinh 2φ+∞ = T 4

−∞ sinh 2φ−∞ = C1/2

T 4
+∞ [2 cosh 2φ+∞ − 1] = T 4

−∞ [2 cosh 2φ−∞ − 1] = C2 . (4.19)

These conditions with v = tanh φ correspond to the Rankine-Hugoniot conditions (4.5).

In this way the shock characteristics Ti and vi in eq. (4.5) describe the asymptotic values

of the fields far from the region, where viscosity is important. In order to construct the

values of the fields in the viscous region, which corresponds to a discontinuity in the shock

description, one has to solve the system of eqs. (4.17)–(4.18). Multiplying the first equation

by 1 + cosh 2φ, the second by sinh 2φ, and subtracting the equations we find

T 4 =
C1 coth φ − C2

3
. (4.20)

Plugging the above relation into eq. (4.17) we find that φ satisfies

2 sinh 2φ [C1 coth φ − C2]

3

[

1 − 31/4F (λ)

2 + cosh 2φ

d

dx

(

sinh φ

[C1 coth φ − C2]
1/4

)]

= C1. (4.21)
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We seek a solution to this equation that satisfies Neumann boundary conditions, i.e. van-

ishing of the derivatives, at x = −∞ and x = +∞. One can rewrite the equation as

dφ

dx
=

T (φ)[2 + cosh 2φ][2T 4(φ) sinh 2φ − C1]

F (λ) cosh φ[2T 4(φ) sinh 2φ + C1/3]
, (4.22)

with T (φ) defined by eq. (4.20). We find that v = tanh φ obeys

dv

dx
=

33/4ζC
1/4
2 [ζ − v]1/4[3 − v2][v − v1][v − v2]

√
1 − v2

F (λ)v1/4[ζ(5 − v2) − 4v]
, (4.23)

where ζ ≡ C1/C2 and v1,2 are the roots of ζ(1 + 3v2) − 4v = 0,

v1,2 =
2 ±

√

4 − 3ζ2

3ζ
. (4.24)

Note that v1 = 1/3v2, cf. eq. (4.6). The viscous counterpart of the ideal hydrodynamics

shock considered in the first subsection corresponds to the range 1 ≤ ζ < 2/
√

3 where v1,2

are real and 1/3 ≤ v1,2 ≤ 1.

We first consider the case v(−∞) < v(+∞) and search for the solution of

eq. (4.23) satisfying

v(−∞) = v2 =
2 −

√

4 − 3ζ2

3ζ
, v(+∞) = v1 =

2 +
√

4 − 3ζ2

3ζ
. (4.25)

Such a solution must have a positive derivative and values close to v2 in the range v2 <

v < v1 in some region of space. However, eq. (4.23) dictates that at least close to v1,2 the

sign of dv/dx is determined by [v − v1][v − v2] which is negative at v2 < v < v1. This

follows by observing that the factor ζ(5 − v2) − 4v in the denominator of eq. (4.23) obeys

ζ(5 − v2) − 4v = 3ζ[v − v1][v − v2] + 4ζ[1 − v2]. Thus it is not possible to construct the

solutions with v(−∞) < v(+∞).

In contrast, the solutions with v(−∞) > v(+∞) for which

v(−∞) = v2 =
2 +

√

4 − 3ζ2

3ζ
, v(+∞) = v1 =

2 −
√

4 − 3ζ2

3ζ
. (4.26)

are easily constructed. Noting that ζ(5−v2)−4v is always positive for v2 < v < v1 at ζ > 1

we conclude from eq. (4.23) that v(x) decreases monotonically from [2 +
√

4 − 3ζ2]/3ζ at

x = −∞ to [2 −
√

4 − 3ζ2]/3ζ at x = +∞. Here we use that it takes the solution of an

equation of the type dv/dt = H(v) infinite ”time” t to reach a zero of an analytic function

H(φ). The implicit form of the solution is given by

x − x0 =
F (λ)

33/4ζC
1/4
2

×
∫ v

2/3ζ

v′1/4[ζ(5 − v′2) − 4v′]dv′

[ζ − v′]1/4[3 − v′2][v′ − [2 +
√

4 − 3ζ2]/3ζ][v′ − [2 −
√

4 − 3ζ2]/3ζ]
√

1 − v′2
,

(4.27)
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where the constant x0 is the point at which v(x) attains its middle value 2/3ζ (naturally the

solution is translation-invariant). In the following we set x0 = 0. Note that v(x,C1, C2) =

v(C1/C2, C
1/4
2 x). The dependence of temperature on x is determined by T 4(x) = C2[ζ −

v(x)]/3v(x). One observes that the necessary condition that the resulting expression for

T 4 is positive is satisfied by ζ > 1 and v < 1. The ideal hydrodynamics shock is recovered

in the formal limit of zero viscosity, F (λ) → 0.

Thus the viscosity selects among the ideal hydrodynamics shocks only those for which

the inflow velocity v(−∞) is larger than the outflow velocity v(+∞). This has a simple

meaning: the dropping of velocity corresponds to a dissipative action of the viscosity

(friction), while velocity increase would qualitatively mean an accelerating action of the

friction. The selected flows start as supersonic and end as subsonic.

It remains to consider the condition under which the above solution has a small Knud-

sen number to justify neglecting the higher derivative terms in T 0x and T xx. We notice

that generally F (λ) is of the same order as G(λ) appearing in the expression (1.2) for lcor,

see [10, 12]. We define the local Knudsen number by

Kn = lcor

∣

∣

∣

∣

v′

v

∣

∣

∣

∣

=
3ζ[3 − v2]|[v − v1][v − v2]|

√
1 − v2

v[ζ(5 − v2) − 4v]
, (4.28)

where we used eqs. (1.2) and (4.23). The viscous shock solution above is valid if Kn ≪ 1

uniformly. At fixed ζ, by choosing a sufficiently small C2 one may achieve an arbitrarily

large scale of variations of v in space, due to v(x,C1, C2) = v(C1/C2, C
1/4
2 x). This, however,

does not lead to a solution with a small Knudsen number, since the correlation length also

increases under such scaling of Ci. This feature is taken into account by eq. (4.28), that

depends only on the ratio C1/C2.

To check that Kn ≪ 1, it is enough to substitute in the above equation the middle

value 2/3ζ of v which produces a term of order 4 − 3ζ2 (ζ belongs to the range [1, 2/
√

3].

It follows that Kn ≪ 1 is satisfied only for ζ close to 2/
√

3 (a more precise condition is

derived below). For such ζ, the inflow velocity v(−∞) is close to the speed of sound 1/
√

3,

and the outflow obeys v(+∞) ≈ v(−∞), cf. remarks to eq. (4.6) . The Knudsen number

is small just because the total variation of v is small. In other words, for this solution

the requirement of locally small variations of fields, implies also that the global variation

is small.

4.4 The viscous shock solution at a small Knudsen number

In the small Knudsen number domain ζ = 2/
√

3 − ǫ with ǫ ≪ 1, the velocity changes in

the interval [1/
√

3− δ, 1/
√

3+ δ] where δ = ǫ1/23−1/4. Using that the total variation of the

solution is small, one can obtain more explicit expressions in this case. To leading order in

δ eq. (4.23) becomes

dṽ

dx
=

31/4
√

2C
1/4
2 [ṽ − δ][ṽ + δ]

F (λ)
, (4.29)

where ṽ = v − 1/
√

3 is the velocity deviation from the speed of sound. The solution of

the above equation gives the well-known kink solution, which can also be obtained by
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expanding the integral (4.27),

v =
1√
3
− δ tanh

[x

L

]

, L =
F (λ)

31/4
√

2C
1/4
2 δ

∼ lcor

δ
, (4.30)

where we used that T ≈ [C2/3]
1/4 holds for the solution. One has

T 4 ≈ C2

3
+

2C2δ√
3

tanh
[x

L

]

. (4.31)

We see that the Knudsen number Kn = lcor/L ∼ δ is small at δ ≪ 1. Note, that the

Knudsen number definition (4.28) would give incorrectly Kn ∼ δ2 - the reason is that v(x)

has a special form where v′(x) is determined by the small correction ṽ to the main constant

part 1/
√

3.

One can exclude the constant component in v(x) by passing to the frame moving at the

speed of sound, where the solution takes the form of a kink propagating at the sound speed,

v

c
= −3δ

2
tanh

[

√

3

2

(

x + ct/
√

3

L

)]

,

T 4 ≈ C2

3
+

2C2δ√
3

tanh

[

√

3

2

(

x + ct/
√

3

L

)]

, (4.32)

in the leading order in δ, where we restored c in v. One sees that the solution is a near

equilibrium state. In the limit c → ∞ the motion gets degenerated to v = const in accord

with the fact that the only incompressible one-dimensional flow is a constant one.

4.5 The shock solution at a Knudsen number of order unity

We saw above that if the shock solution is such that the inflow velocity v(−∞) differs

significantly from the speed of sound then there are regions in the flow where Kn ∼ 1

(this follows from self-consistency: if Kn ≪ 1 then viscous hydrodynamics should work

well). The solution of the viscous hydrodynamics then does not describe the solutions

correctly in those regions though it may give a good idea of the solution there. To find an

exact solution one should account for higher order derivatives in the constitutive relation

for T µν (for instance, the second derivative terms were discussed in [9, 16]). The above

however does not undermine the utility of the ideal hydrodynamics shock which is still a

good description of the solution far from the transition region near x = 0.

We show this point explicitly. We consider a non-equilibrium steady state of a CFT

fluid which is sustained by the fluxes of energy and x−component of momentum from

infinity. In this state the mean value of T µν depends only on x and eqs. (4.10) are satisfied

irrespective of the validity of the hydrodynamic constitutive relations. Now, far from

the transition region the scale of variations of the mean value of the stress-energy tensor

becomes large, the state is locally very close to equilibrium and the ideal hydrodynamics

approximation Tµν = T 4 [ηµν + 4uµuν ] works with increasing degree of accuracy. In other

words, far from the transition region the state looks locally closer and closer to the global

equilibrium (the information that the local equilibrium state is not the global one becomes
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further separated in space). As a result, the ideal hydrodynamics shock solution allows to

establish correctly at all orders the connection between the asymptotic values of v(−∞),

T (−∞) and v(+∞), T (+∞), and thus also of T µν(−∞) and T µν(+∞). As far as the

intermediate region of the transition is concerned, it is described by the solution in the

previous subsection for the inflow velocity close to the speed of sound 1/
√

3. When the

inflow velocity 1/
√

3 < v(−∞) < 1 is not close to 1/
√

3 the description of the transition

region demands the account of the higher order derivatives. We do not expect, however,

that the higher derivative terms will lead to a further selection of the ideal hydrodynamic

shocks beyond the one imposed by the viscosity.

4.6 How is it possible to have Kn ≪ 1, while the viscous term still being

important?

It is natural to ask why is it possible to construct a solution where the viscous term,

whose effect is generally measured by the Knudsen number, is important while higher

order derivative terms, whose effect is measured by the same parameter, are not. The

reason being the presence of an additional dimensionless parameter in the equations, v/c

(here we restore c in the relations). As long as we consider relativistic motions with v ∼ c,

the viscous to ideal terms ratio is governed by the same parameter Kn as the ratio of

higher order derivative terms to the viscous one. However, as we pass to motions with

v ≪ c the viscous to ideal terms ratio involves an additional small parameter v/c. In the

case of properly defined non-relativistic motions obeying the incompressible Navier-Stokes

equations the dimensionless parameter governing the viscous to ideal terms ratio is the

inverse of the Reynolds number Re

Re ∼ vL/ν , (4.33)

where v is the characteristic velocity, L is the characteristic scale and ν is the kinematic

viscosity, see eq. (1.13). Thus, one can have a situation, where in some regions of space

the Reynolds number is not large and viscosity is important, while the Knudsen number

is still small everywhere. As long as the viscosity prevents the generation of smaller scales

by the dynamics (as it does at least in known cases), one obtains a global solution of the

hydrodynamics with viscous term important but higher order derivatives not. In other

words, while viscosity is typically a singular perturbation producing order one effects in

the solution [17], the higher order terms are often regular perturbations.

The relevance of the above discussion to the viscous shock solution considered before,

is that at small Knudsen number, v(x) ≪ c in (4.32). Thus, in the frame moving at the

speed of sound one deals with the situation of small v/c and the above picture holds. Let

us stress again, however, that this solution has no well-defined non-relativistic limit as the

shock propagates at a speed of order c.

Note also, that here and below we use the notion of a local Reynolds (Knudsen) number,

which is the Reynolds (Knudsen) number defined via the characteristic values of the scale

and velocity in the considered region of space [5].
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5 Gravity and fluid dynamics

It has been shown in [3], that the four-dimensional CFT hydrodynamics equations are

the same as the equations describing the evolution of long-scale perturbations of the five-

dimensional black brane. In fact, the derivation of this result parallels exactly the conven-

tional derivation of hydrodynamics equations from the Boltzmann equation. Let us show

this in the simplest case of a non-relativistic monoatomic gas.

The Boltzmann equation for a non-relativistic monoatomic gas reads [18]

∂tf + V ∇xf = Stf , (5.1)

where f(x,p, t) is the density function in a single particle phase space, V = p/m where m is

the particles mass, and Stf is the collision integral, which is quadratic in f . Equation (5.1)

has a steady-state solution of a Maxwell distribution form

f(x,p) =
N

[2πmkBT ]3/2
exp

[

−m (V − v)2

2kBT

]

, (5.2)

where N is the mean concentration of particles, T is the temperature and v is an arbitrary

velocity present due to the Galilean invariance of eq. (5.1).

The hydrodynamics equations arise when solving the Boltzmann equation by the

method of variation of constants. Consider a solution in the form

f(x,p, t) = f0(x,p, t) + δf(x,p, t),

f0(x,p, t) =
N(x, t)

[2πmkBT (x, t)]3/2
exp

[

−m [V − v(x, t)]2

2kBT (x, t)

]

, (5.3)

where δf ≪ f0. This describes the local thermal equilibrium in the gas. The construction of

a solution to the Boltzmann equation where f0 is the zeroth order approximation, produces

a series in the Knudsen number Kn, i.e. the ratio of the mean free path to the scale of spatial

variations of the fields. Thus, δf ∼ Knf0, and the hydrodynamics equations governing the

evolution of N(x, t), T (x, t) and v(x, t) result as the conditions of the series constructibility.

Analogous derivation of hydrodynamics from the (relativistic) Boltzmann equation can

be performed for a CFT. This becomes possible in the limit of the weak coupling where

quasiparticle excitations are well-defined (see e.g. [9]). In contrast, at a strong or order

unity coupling the Boltzmann equation does not apply. What this means normally is, that

for non weakly coupled fluids the hydrodynamics equations are valid but cannot be derived

from a microscopic description. The CFT fluids, however, bring a surprise.

Consider the derivation of the CFT hydrodynamics at strong coupling from the equa-

tions of gravity. The analogue of eq. (5.1) is given by the five-dimensional Einstein equations

with negative cosmological constant

Rmn + 4gmn = 0, R = −20 . (5.4)

These equations have a particular ”thermal equilibrium” solution - the boosted black brane

ds2 = −2uµdxµdr + π4T 4r−2uµuνdxµdxν + r2ηµνdxµdxν , (5.5)
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where the temperature T is constant. The presence of an arbitrary constant vector uµ in

the above solution is due to Lorentz invariance, much like the presence of v in eq. (5.2) due

to Galilean invariance. As in eq. (5.3), one looks for a solution of the Einstein equation by

the method of variation of constants using the ansatz

gmn = (g0)mn + δgmn,

(g0)mndymdyn = −2uµ(xα)dxµdr + π4T 4(xα)r−2uµ(xα)uν(x
α)dxµdxν + r2ηµνdxµdxν ,

(5.6)

where y = (xµ, r). As in the Boltzmann equation, the condition of constructibility of the

series solution produces equations for uµ(xα) and T (xα). These equations are the hydro-

dynamics equations for a certain class of CFTs in the limit of infinite coupling [3]. As far

as the hydrodynamic equations are concerned the infinite coupling means only a particular

value of constants in the relations. For example, for dissipative hydrodynamics consid-

ered in the previous sections infinite coupling means taking instead of F (λ) its appropriate

λ → ∞ limit, F = 1/π. Note, that at the level of the ideal hydrodynamic equations there

is no difference at all between different CFTs - the equations are the same. The resulting

series for gmn is the series in the Knudsen number of the boundary CFT hydrodynamics.

Thus equations of gravity play for the hydrodynamic equations of a strongly coupled

CFTs much the same role as the Boltzmann equation plays at a weak coupling. It is

natural to inquire whether the equations of the CFT hydrodynamics allow for a microscopic

derivation also at an arbitrary intermediate coupling (say from the equations of gravity with

higher order curvature terms in the action). This important question is beyond the scope

of this work and is a subject for the future research.

We conclude from the above that the solutions to the CFT hydrodynamics at an infi-

nite coupling describe not only the large-scale motions of the theory, but also the solutions

to gravity corresponding to eq. (5.6). We may now use the general results for the CFT

hydrodynamics, obtained in the previous section and valid in particular for the hydrody-

namics of the infinitely coupled CFT resulting from eqs. (5.4), in order to gain some insight

into gravity dynamics. If we consider initial conditions for gravity, that correspond to the

initial conditions for hydrodynamics with v ∼ c and Kn ≪ 1 everywhere, then for some

limited amount of time we may use ideal hydrodynamics to determine the metric evolution.

The ideal hydrodynamic flow is compressible, and it leads to the formation of discontinu-

ities (and maybe other, yet unknown types of singularities) in a finite time. In particular,

for ”one-dimensional” initial conditions, one may use the exact solutions obtained in the

previous sections. Then, ideal hydrodynamics predicts that in a finite time, regions with

large metric curvature will appear. They correspond to large values of gradients of the hy-

drodynamics fields. Eventually, in these regions higher order derivative terms will become

important for the evolution of uµ and T and (expectedly) stop the growth of the curvature.

One expects Kn ∼ 1 and δg ∼ g0 in these regions.
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5.1 The importance of the solutions to non-relativistic hydrodynamics for the

construction of global solutions to gravity

As already explained in the last subsection of section 4 the consideration of non-relativistic

solutions with v ≪ c allows one to construct global solutions of hydrodynamics with

Kn ≪ 1 everywhere. Such solutions are especially important from the viewpoint of the

construction of globally valid approximations to the solutions of gravity. Indeed, for them

one has the explicit form g ≈ g0 of the approximate solution to the Einstein equations (5.4).

This is quite similar to the situation for non-relativistic classical gas where the local ther-

mal equilibrium f ≈ f0 holds even though viscosity is important for the evolution of the

local parameters of equilibrium T , N and v, cf. [18].

The explicit form of the approximate solution to the Einstein equations resulting from

the solution to the non-relativistic incompressible Navier-Stokes equations was summarized

in eqs. (1.17)–(1.18).

5.2 Global solution for gravity from a small Knudsen number viscous shock

As an example of a global solution to gravity obtained from hydrodynamics we consider

the five-dimensional asymptotically AdS gravity solution that corresponds to the viscous

shock. Using the results of the previous section we find that the metric gvs defined by

(gvs)mndymdyn =
√

6

[

1 −
√

3δ tanh(x/L)

2

]

dtdr −
√

2

[

1 − 3
√

3δ tanh(x/L)

2

]

dxdr

+r2ηµνdxµdxν +
π4C2

3r2

[

1 + 2
√

3δ tanh
( x

L

)]

×
[

[

1 −
√

3δ tanh
(x

L

)] 3dt2

2
−

√
3
[

1 − 2
√

3δ tanh
(x

L

)]

dxdt

+
[

1 − 3
√

3δ tanh
( x

L

)] dx2

2

]

,

L =
1

31/4
√

2πC
1/4
2 δ

, (5.7)

is a solution of the Einstein equations to order δ2 ≪ 1 (the constant C2 > 0 is arbitrary),

and indeed, an explicit calculation verifies that.

Above we used that at small δ one has u0 = −[1 − v2]−1/2 ≈ −
√

3/2[1 −√
3δ tanh(x/L)/2] and ux = v[1 − v2]−1/2 ≈ 1/

√
2[1 − 3

√
3δ tanh(x/L)/2], where v(x) is

given by eq. (4.30). As we saw in the previous section the requirement Kn ≪ 1 imposes that

the total variation of v is small and the above solution describes a near equilibrium state.

The above stationary solution describes a non-equilibrium steady state that generalizes

the black-brane solution and corresponds to small deviations from the equilibrium. It

gives the solution of the Einstein equations with the boundary condition imposed on the

boundary stress tensor [19]

T µ
ν = −2 lim

r→∞
r4 (Kµ

ν − δµ
ν ) , (5.8)
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where Kµν is the extrinsic curvature tensor to the surface at fixed r and T µν is the solution

of the hydrodynamics equations. If one used the ideal hydrodynamics approximation,

where the shock is discontinuous one would obtain a domain wall solution for gravity with

no δ−function sources at the wall. At small Kn, the solution (5.7) allows to resolve the

inner structure of the wall. At Kn ∼ 1, the resolution of the wall structure requires the

inclusion of the higher order derivatives in the analysis. However, we stress again that the

ideal shock solution provides a correct description of the domain wall solution far from

wall at any Kn. Finally, we note that it is straightforward to generalize this domain wall

solution of gravity by applying special conformal transformations to the solution.
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